Coaching & Lane Play & Training LEN NICHOLSON Coaching & Lane Play & Training LEN NICHOLSON

What to LOOK for when choosing a "Coach"

Once you have bowled several games and have a feel for the "game", I think that it is very important (and necessary) to start looking for a "Coach". Why? Improving your scores is essential in getting more enjoyment out of this great game.

Based on your experience (basically how many games you have bowled), will help you to determine just how serious you want to be. The "rule of thumb" and "what to look for" in choosing a Coach is stated below. (NOTE: These are not listed in any particular order, as the reasons are all equally important).

REMEMBER: "You" are the student and you need a good teacher. Interview your prospective Coach to see if they have the following qualifications. You may you need more than one.

•    Motivators: All great Coaches in all sports have the innate ability to motivate their athletes. Be sure that your Coach has this ability.
•    Fundamentalist: Be sure that your Coach knows the proper fundamentals of the game, from: "push-away" to "timing" to "follow-through", etc.
•    Knowledge of Equipment: It is so important in today's game to have a Coach that has a thorough knowledge of bowling balls. Be sure that they do.
•    Knowledge of Lane Conditions: With the game getting more and more technical, a Coach that knows about lane conditions is essential.
•    Positive Mental Attitude: Does your Coach have a "positive" Mental Attitude? If not, it's time to find one that does.
•    Disciplinarian: A tough Coach is the best Coach. If you think that you hate him/her because they make you work hard, you will love them later on.
•    Realistic Goal Setter: Are you honest with your Coach? Is your Coach honest with you? Be realistic when you both set YOUR goals. Frankly, being a World Champion is NOT for everybody. "THAT" takes many things and is clearly reserved for a very few of the extremely talented individuals. HOWEVER, there are many other goals that can be reached. Set your goals realistically (best on your team, best in your bowling center, best in your city, best in your state, ABC Hall of Fame, etc.).

I hope that info helps when it is time for you to decide on getting a Coach. You are never too young or too old to start learning and improving in this great Sport.

 REMEMBER, NOT everybody is a Coach. Only a few are qualified based on the criteria listed above. I'm sure you have heard a team-mate tell you that you are "dropping your shoulder" or: "not following through". Certainly, they all mean well.  BUT - are they telling you ‘why’ or ‘how’ you can fix this particular problem?

Decide today to seek some quality help from a qualified Coach in your area.

Read More

The One Thing That Really Makes Oil Patterns Play Different

Normal force, N, is the force that pushes up against an object, perpendicular to the surface the object is on. In other words, the normal force is the force pushing the two surfaces together. The stronger the normal force, the stronger the force due to friction.

How often have you experienced an oil pattern that didn’t play anything like the pattern graph suggested it would? The pattern was ‘x’ length, the high point of the oil on ‘y’ board, yet when you played on it your ball didn’t react anything like you expected, and the optimum pattern exit point wasn’t near where it was “supposed to be”.

From there we look for explanations, and we might get answers like; “the temperature was different today”, “it was raining outside”, “the lane machine put out the wrong pattern”, or who knows what else. In past years technology might not have been available to check things, so theories flourished.

Today, however, we can use technology to confirm the correct pattern is in the lane machine. We can use the Lane Monitor to make sure it was applied correctly to the lane. And with the Kegel LaneMapper, we can even measure the topography of the lanes to see if and how that influenced things.

Knowing and understanding these critical components about our invisible playing environment can help us answer the infamous question every person entrusted with lane conditions has heard at least once in their life; “what happened?”

What lane topographies are most common?

The Kegel Training Center has 12 fully adjustable lanes that can be shaped to mimic almost any lane topography known to exist. After measuring thousands of lanes over the years we have shaped three pairs of lanes in the KTC with some common topographical shapes, and one pair of lanes we consider as “fairly neutral”.

Neutral lanes are not perfectly flat, no lane in the world is, but a neutral lane has topographical slopes on them which do not “overly disturb” the ball as it travels from the foul line to pin deck.

We see neutral lanes often when they are made of wood and resurfaced regularly – these lane types are the “flattest” lanes with regard to topographical shape.

We also see neutral synthetic lanes, but not very often. In fact, of all the synthetic lane bowling centers we have mapped over the years we can count the number of centers having totally neutral synthetic lanes on one hand – it's definitely the exception, not the rule.

The three most common topographical shaped lanes today are what we call a seagull-wing or bird-wing shape, depressed (dish-shaped), and crowned (mound-shaped). These lane shapes are where things get interesting with regard to oil patterns, how they play, and maybe most important, how they develop as the oil pattern breaks down.

Seagull-wing shaped lanes have slopes towards the center from around the second arrow, and slopes towards the gutter outside of that. This happens because a synthetic panel is mostly screwed down on the outside 1st or 2nd boards on either side and then in the middle on the 20th board. In-between there are no securing screws “holding the panel down” other than where the panels meet, which is only every 10’ or 12’ depending on the manufacturer.

Seagull or Bird Wing Lane Shape

In the summertime when the humidity is high, or in climates with high humidity, we see this lane shape very often - especially when wood lanes are underneath the panels.

Moisture penetration on a wood lane comes from the bottom of the lane where the boards are put together essentially making the lane swell up, which then pushes up the panels in-between these rows of securing screws. This causes the lane to “mound up” around the 8-9-10 board creating slopes towards center inside of that area, and slopes towards the gutter outside of that. The resulting shape resembles a seagull's wing.

Furthermore, in both new lanes with a continuous LSL underlayment (Laminated Strand Lumber - an engineered wood product) and for certain manufacturers who use MDF or LSL to replace the old wood head section, there is a similar securing-screw pattern.

Just like the lane panels themselves, the underlayment is top-screwed in three spots across the lane, near the two outer edges and near the middle, at each of the 30 or so securing locations along the 60' length of the lane. This can also create a bird-wing shaped lane; albeit not as severe as what we see with a wood lane underlayment in high humid environments.

Crowned lanes also happen in year-round climates with high humidity; like Island countries, cities by the sea, or in Southeast Asia. This often happens with overlays where the wood lane underlayment was not screwed down in the middle prior to the lane panel installation.

Depressed lanes often happen in lower humidity climates, or in the winter time, with a wood lane underlayment. In fact, all wood lanes are cut with a slight depression in them, but the longer the panels have been on top of the old wood lane, the more they tend to depress - especially in the area of the lane that takes the constant pounding of the bowling ball, the first third of the lane.

Have you ever notice that scores often go up after Christmas time? This is when a wood lane, or synthetic panels on top of wood lanes, become most depressed because the moisture has finally been released from the wood causing it to contract (shrink). Think of a high banked race track - it's much easier to navigate the curve.

New synthetic lanes can also be installed with a depression, but rarely do we see a nice smooth depression like a resurfaced wood lane has.

Although we see these type lane shapes often down the entire lane, we also see at times a combination of shapes on any one lane. For certain type overlays, we often see very depressed heads and slightly beyond (mostly related to ball impacts), and then bird-wing shapes after that.

In the case of a new synthetic installation, we often see topography slopes that are totally random throughout any one lane, or even within one panel.

Lane shape is more the reason than anything else why certain styles (ball rolls) “match up” to certain bowling centers.

Because of the invention of the Kegel LaneMapper and resulting Slope Graphs, we now know why, and we can show it.

Where the rubber meets the road

A few months ago the Men’s National Team from Sweden came to the Kegel Training Center with a special request; to learn more about topography and train on lanes with topography differences. So to prepare for their visit we adjusted lanes 5-6 with a seagull-wing shape, lanes 7-8 with a crown, and lanes 9-10 with a depression. We also made sure the lanes remained within USBC specifications.

Below are the Slope Graphs of each pair of lanes:

Remember, the specification for lanes is plus/minus .040”, and it does not specify which way a lane must be shaped in order to satisfy those requirements. The specification also does not state over how many boards those min/max numbers can hit their limit, and that’s where things can get interesting.

For instance, if there is a .024” rise on the lane from the gutter to the eighth board, that’s an average Slope per Board of .003” – that equates to a smooth cross-tilt of .120”. The ball has a very hard time “hooking back to the pocket” on a slope this severe and we see this more often than you might think.

For more about Slope per Board, read this article: Kegel’s Revolutionary Slope Graphs.

So how does lane topography affect an oil pattern and the resulting breakdown?

This is where we have learned the same thing Sir Isaac Newton learned – you can’t fight gravity, you can only work with it.

For a little test and learning experience for all involved, we decided that the 12 players from Team Sweden would bowl six games across the three pair of lanes moving every game – this would make all players hit each pair twice.

There were three left-handed players and nine right-handed players. We chose a medium length oil pattern from the 2017 World Bowling patterns, Beijing.

Here is what the fresh oil pattern looked like, with the foul line being at the top of the graphic:

2017 World Bowling Beijing oil pattern

After 12 games of bowling, we took after tapes on each of the pairs to see how the players broke down the oil pattern on these different lane shapes.

On lanes 5-6, the bird-wing shaped lane, players tried to play outside in practice but the slopes towards the gutter made it play very difficult - they immediately “moved inside” and away from the “hang spot”.

Beijing oil pattern breakdown on the bird-wing shaped lanes

The after tapes show the paths of all balls by way of oil pattern depletion. From these tapes, we can clearly see both left-handers and right-handers played deep inside on this pair of lanes. Our tape data also shows the farthest outside anyone got was on board 9, because there was hardly any pattern depletion of the pattern outside of that. Specto data confirmed this depletion observation.

On lanes 7-8, the crowned pair of lanes, everyone stayed much more outside and never migrated that deep - in fact, they never got inside the third arrow. A few factors involved here; gravity simply helps “push” the ball towards the outside, and the ball doesn’t see pattern breakdown near as much because it's rotating "with the slope" - Normal Force is lessened.

Beijing oil pattern breakdown on the crown shaped lanes

On lanes 9-10, the depressed shaped pair of lanes, the depletion data shows how quickly everyone moved inside and how far they banked it to the towards the outside part of the lane – there wasn't a "hang spot" on that lane.

From our experience we know the ball “sees breakdown" much quicker on the uphill side of a depressed lane because the lane is essentially pushing up against the ball (greater Normal Force) making it “poke through” the thin oil film easier, which causes more friction and makes the players move inside quicker.

Once deep inside and players can play the “downhill side” of the depression the oil pattern might even feel like it has “stabilized” when in fact, it’s just gravity helping the ball “push” towards the outside. In this case, we literally mean push.

This lane shape is the main reason lofting of the gutter comes into play. Along with the pattern "feeling" like it's breaking down quickly, by lofting the gutter cap the ball is able to remain on the downhill side of the depression longer. This allows the ball to retain more energy while also creating a bigger margin for error, along with improved pin carry.

If players tried to stay to the right towards or on the uphill side of the depression, the ball would simply use up energy too quick, minimizing both pin carry and mistake area.

Beijing oil pattern breakdown on the depressed shaped lanes

Along with depletion data, we used Specto to track the ball paths on each lane. The below graph shows the average lines of each right-handed player during the last game; the blue line is the bird-wing shaped lane, the orange line on the crowned lane, and the grey line on the depressed lane.

Specto showing the average right-handed ball paths during game six of all three lane shapes

Just like the depletion data showed, the players were most inside on the bird-wing shaped lanes in order to stay away from the hang area and to control the pocket. On the depressed lanes they had more “free hook” so they could swing the ball out farther. And on the crowned lanes, they didn't have to move deep inside so they stayed to the right much farther and played a tighter line.

So there we have it – the same oil pattern, applied at the same time with the same lane machine, using the same oil and cleaner, on the same lane surface, with the same bowlers, but three different lane shapes causing that oil pattern to play different, and break down significantly different.

Topography has been a buzz word for a few years now and we’re really seeing how influential it is, and how it affects lane play. For instance, want to know which part of the lane your ball is influenced by topography the most? Or how different ball rolls are affected by these slopes on the lane surface?

We’ve watched enough over the years to make some conclusions which are not only backed up by results but by physics. Stay tuned, the answers will be enlightening…

Read More

5 Must Know Things about Oil Pattern Taper

Oil pattern taper, the amount of lane conditioner in the front part of an oil pattern versus how much is at the end of the oil pattern, has had to change significantly as bowling ball technology has changed. Lane conditioner (lane oil) has two main functions; to protect the lane surface, and to provide smooth predictable ball motion for as many styles as possible.

1 - History

When bowling balls were balanced, the rotation of the bowling ball was very stable and there was essentially one oil ring on the surface of the ball. Front-to-back oil taper with balanced balls is very different than what is needed with modern high flaring balls, which have multiple oil rings on them.

Remember, with high flaring balls, the oil pattern breaks down from back to front and with low flaring balls it’s the opposite, oil patterns break down from front to back. As a refresher, here is an article on that explains how oil patterns breakdown differently between the two types of bowling balls: Breakdown and Carrydown – Then and Now.

At the same time that bowling balls were going through changes, lane surfaces were also changing – “it’s very hard to hit a moving target” was something John Davis used to say often when referring to the art of lane conditioning.

As we have shown often in seminars and online articles, regularly maintained wood bowling lanes are the most consistent type of lane surfaces from lane-to-lane, and bowling center to bowling center. There may be some lengthwise level differences from center to center, but the overwhelming majority of wood lanes were cut with a slight depression, which allowed statements like “the oil pattern taper should be 3:1” to be more valid.

With synthetic lanes however, lane shapes are all over the map, and blanket statements about front-to-back taper, or any oil pattern statement for that matter, can often do more harm than good for people trying to find the best solution for their bowling center.

In measuring hundreds of bowling centers around the world with the Kegel LaneMapper we have found the lanes in any one center follow the same trend as it relates to lengthwise levelness. The only exception to that rule is when bowling centers have added sections of lanes over time.

So if we simply talk about oil pattern taper as it relates to the lengthwise level of a bowling lane, if a lane went downhill we could easily increase the front-to-back taper ratio to help the ball slow down to achieve “good ball motion”. Conversely, if the lanes in a bowling center predominantly go uphill, we might decrease the taper of the oil pattern so the ball would slow down less in order to provide good ball motion for the majority of bowlers.

When lanes were made of wood and resurfaced often, and bowling balls were essentially balanced, it was that simple – but not today.

Today’s synthetic lanes can be crowned, they can be depressed, they can be depressed up front and crowned down lane or the opposite, they can be high right, high left, and anything in between. We very often have seen synthetic lanes that are shaped like a seagull wing; crowned outside and depressed in the middle.

Add the fact that your customers have bowling balls that are still balanced (low flaring) to the very unbalanced kind (high flaring), providing that perfect front-to-back taper can be a challenge.

Of course your daily house pattern is most important for your center, and getting that one pattern “right” can be accomplished, but applying a tournament pattern, or one of the many named patterns out there, and having players expecting it to play similar from center to center is like expecting to win the lottery.

2 - House Shot Patterns (Recreational Type)

Most daily patterns used in bowling centers around the world are of the easy variety – a lot of conditioner in the middle and not much outside. For these type oil patterns, it is most important to control the amount in the mid lane and at the very end of the pattern to 1, minimize carrydown and 2, to open up the outside portion of the lane.

The graphic below is of a typical oil pattern taper when only non-flaring balls were in use. The goal then was to protect and apply conditioner only in the head area and let the conditioner “bleed off” the oil transfer system the rest of the way down the lane to the end of the oil pattern. From 8’ to the end of the pattern was typically a front-to-back taper ratio of 3-4 to 1 and that was with a maximum of 20 units in the head area!

 

Today’s oil patterns with today’s high flaring balls require a different type of taper, and much more volume. If we start with 80 plus units in the heads, there might still be 50 plus units in the middle to the 30 foot range. We do this in order to provide the bowler with a lot of hold area and decent ball motion, along with providing durability to protect the lane as long as possible.

To get that amount of oil throughout the pattern, the buffer brush must be loaded much more throughout the oil pattern with possibly a much more drastic drop off of conditioner towards the end part of the pattern. The amount towards the end of the pattern should decrease at a rate according to the type of lane conditioner in use and/or lane topography.

Below is an example of a typical daily oil pattern taper using high flaring bowling balls. As you can see, much more conditioner is used throughout the entire pattern.

 

The outside portion of the pattern has very little conditioner because most centers want to provide the bowler with a lot of mistake area outside of target. So even though we may want some taper there to allow the straighter player to start more to the right, most are concerned about not having too much conditioner towards the outside area in order to provide the largest margin for error possible.

3 - Challenge and Sport Oil Patterns (Competitive)

When designing competitive oil patterns, the goals of a specific oil pattern can vary greatly. If the pattern must play good on the fresh, because of a match-play format for example, finding that perfect taper for game one might be in order. That type pattern will usually be a higher front-to-back taper ratio in order to get the ball to read the lane sooner within the oil pattern.

If the goal is for the pattern to keep players in a specific zone for a longer time, front-to-back taper might not be as important as making sure the end of the pattern holds up for more games. That type of pattern would most likely have much less taper and play more difficult on the fresh, and then become easier as depletion towards the mid and end part of the oil pattern occurs.

A perfect example of an oil pattern with very little front-to-back taper is the 2015 US Open pattern that was used in Garland Texas. The amount of oil in the middle at 8’ on this pattern proved to be in the high 50 unit range, at 22' in the mid 60 unit range, and at 2’ before the end of the oil pattern (41') was in the mid 30 unit range. The front-to-back taper in the middle of that oil pattern was about 1.75 to 1 from 8' to 41', and 2 to 1 from 22' to 41'.

Below are two graphics of the 2015 US Open oil pattern – the 3D and 2D graphs. Lane tapes were taken at 8, 14’, 22’, 27’, 32’, 36’, and 41’.

 

The pattern goal of that event was to try and keep the players from lofting the gutter, which was accomplished, but we cannot discount what was done with topography at that venue as well. Our studies show topography is always a factor in how oil pattern plays, develops, and breaks down. In this case, the USBC made topography public so we know lane topography definitely was an additional reason the pattern held up so well. (The why will be a future article!)

4 - Lane Conditioners

The lane conditioner you choose also must be factored into your oil pattern’s design. Lane conditioners are developed with specific characteristics and your oil pattern should complement those characteristics in order to benefit from them.

For instance; FIRE and ICE were created for increased durability and both require less conditioner at the very end of the pattern than many of our previous conditioners. If there is too much conditioner at the end of the oil pattern the ball will read the carrydown much more than if, for example, the same amount of Prodigy was at the end of the pattern.

If using our newest lane conditioner, Curve, more conditioner can be applied at the end of the oil pattern simply because it’s a higher friction conditioner, and that will help the ball slow down. Also, the ball won’t “see” what is carried down beyond the oil pattern as much as it would with FIRE or ICE. The trade-off however is durability.

5 - Topography

Now that we have those other factors covered, we can touch base on topography some more and how lane shape affects oil patterns. As we touched base earlier, wood lanes have very similar topography; all are slightly depressed (lower in the middle than the outsides) with the main differences from center to center in lengthwise levelness.

Yes we have more wear issues with wood lanes, which can be corrected with a resurfacing or re-coating, but with synthetic lanes we have more diverse shapes on the lane than ever before in the modern history of the game. Those shapes can vary from lane to lane, and even within the same lane. This makes finding that perfect oil pattern on synthetic lanes across any one bowling center more challenging than ever.

For lanes that are predominantly crowned, lowering the amount of conditioner in the mid lane and at the end of the pattern will help the ball lose energy at the proper rate, which will help provide truer ball motion. Crown lanes tend to act like lanes that go downhill, so anything you can do to help the ball slow down will help your bowlers with good ball motion.

For lanes that are severely depressed, and if you wish your bowlers to play right of center, additional conditioner in the mid lane and at the end of the oil pattern helps reduce friction slightly, and therefore helps the ball not lose energy as quick. Think of depressed lane like a banked curve on a race track – the inside part of the lane is lower than the outside part of the lane so the ball is rotating up the hill causing it to use energy quicker, along with normal force helping the ball move more to center.

For seagull wing shaped lanes, and believe us when we say there are many overlays like this, shorter patterns will need increased front-to-back taper in order to get the ball to read the lane earlier. Yet longer patterns on this lane shape will need less taper simply because from 10-10 the lane is depressed - once the ball gets towards the middle and end part of the pattern it sees the lane more, and sooner, as the oil depletes.

Conclusion

In the article titled Breakdown and Carrydown - By The Numbers, we showed how today the front part of the lane never really depletes to the point of excessive friction unless there is a major wear issue – it’s the mid lane and backend that deplete to the point of the ball seeing a great amount of friction.

Sure the front part of the pattern depletes, but if we start with 70-100 units up front, or less like in the US Open example, at the end of play there is still 30 to 40 plus units of conditioner in the front part of the lane, which is plenty to provide a low amount of friction.

In addition, that part of the lane the bowling ball has the least amount revolutions and the most amount of speed - both of those attributes make the ball “see the lane less” than it does at it slows down and revolutions increase.

The point is, front-to-back taper ratios with today’s patterns is not as important as controlling the amount of conditioner in the mid lane and at very end of the pattern.

If you get that correct in your center, the majority of bowlers in your center will have predictable and controllable ball motion, and back end change (carry down) will be minimal. And for the most part, hopefully, you will have happy bowlers.

Read More

The Truth About Tournament Oil Patterns and Conversions

At Kegel we get many requests for converting oil patterns to and from different lane machine technologies. Sometimes it can be for a specific tournament pattern or it may be a named oil pattern. Although we fully realize the intent, we also know that there are many factors other than the oil pattern that determine ball motion, and how easy or difficult lanes play.

One technical reason some oil patterns cannot be converted is simply because some lane machines do not have the capability to apply an oil pattern exactly like the machine it was made for. A few of the new longer Landmark Patterns are good examples as these patterns were designed specifically for the FLEX lane machine.

For example, the Eiffel Tower is a 48 foot Sport pattern and with the variable buffer speed upgrade feature the FLEX has, the last seven feet utilizes a buffer speed of 200 rpm which applies a very light film of conditioner in this zone. If a lane machine does not have the variable buff option the buffer will be rotating at 500 rpm, and apply more conditioner to that zone, making the pattern play much tighter that it was intended to play. That doesn’t mean you can’t have fun if applied with other lane machine technology or the pattern will be terrible, it just won’t “play the same”.

However, even if the oil pattern is matched up perfectly from one technology to the next, there can still be differences in types of conditioners used, cleaner type, cleaner dilution, lane surface friction, and lane surface topography. Even bowler differences (who you will follow at the tournament) from your home center to wherever that tournament pattern will be used at can have a huge impact.

For instance, some lane conditioners play slicker or allow the ball to pick up earlier than other conditioners, some conditioner’s carrydown affect ball motion more than other conditioners, and some lane cleaners leave more residue behind than others causing different amounts of back-end hook. The dilution ratio, the amount of cleaner to water mixture, also affects ball motion, especially at the back-end.

For lane surfaces, conditioned wood lanes tend to hook more and earlier than conditioned synthetic lanes. Higher textured synthetic lanes tend to have an “arcing” ball motion, while smoother synthetic lanes tend to be more “skid-snappy”.

When practicing on a tournament pattern at home, you may be all alone or with a small group with similar styles. We know in today’s bowling environment using today’s equipment, it doesn’t take very long to change that oil pattern into something else simply by rolling balls down the lane. Once at the tournament site however you will be following a much more diverse group of styles, which may very well transform that oil pattern into something different.

It’s not even uncommon for us to see the scoring pace change from different squads in the same tournament using the exact same oil pattern just by the style of bowlers on specific squads, or even by the type of bowling balls used by the participants on different squads!

Topography is also a huge variable when it comes to how a ball hooks (how a ball depletes energy) and how much it hooks. A portion of a lane sloped opposite the rotation of the ball will cause the ball to lose energy quickly, while a portion of a lane sloped with the rotation of the ball will cause the ball to lose energy slower. These slopes on the lane surface can also help the ball move more easily towards the pocket, or make it more difficult for the ball to move towards the pocket.

A textbook example of how lane surface and topography can affect scoring pace is from the 2014 and 2015 Teen Masters. In this event, many of the participants played both years, all players use the same type balls, the same oil and cleaner were used, and the long oil pattern was exactly the same both years, so we can discount all those variables.

However, in 2015, the event was held at a newer installation and the lanes are predominately shaped with a certain type topography that is known to produce high scores; the overall scoring pace was 20 pins higher in 2015 than in 2014 and an abnormal amount of 300 games were bowled. The 2015 environment also benefited some players more than others as averages between the two events were 40 pins higher per game in 2015 versus 2014, for certain styles of play.

Kegel has mapped thousands of bowling lanes around the world and we have yet to find two lanes that have the exact same measurements with regard to lengthwise tilts, crosstilts, crowns, and depressions. We also have yet to find a perfectly level lane. It could be said that bowling lanes are like finger prints; no two are the same.

Therefore, perfect and exact pattern oil patterns, or conversions, GUARANTEE that ball motion will be different at home versus where you will play on that pattern at whatever event you are going to.

A good coaching tip is to practice on a competitive type oil pattern that has a similar distance to the tournament pattern you will be bowling on. This type of preparation will help you to keep an open mind and to be flexible when you arrive at the tournament site. It is easy to get overly caught up in oil patterns with all the information and focus on oil patterns today. Unfortunately, more often than not, this closes the mind and shifts focus to “what should be” instead of “what might be”.

In conclusion, if you are practicing at home on a tournament oil pattern, and planning on competing or coaching in that tournament, take that oil pattern with a grain of salt and keep your mind open - very open. We can just about guarantee things will be different at the tournament site than at your home center.

Read More

2015 USBC Open Championship Oil Pattern Program Sheet

This month’s Inside Line feature article is about key items on the KEGEL FLEX program sheet of both the Team event and the Singles and Doubles event oil patterns for 2015 USBC Open Championships

Oil Pattern Distance

Oil pattern distance is one of the main key items to look for on any program sheet. The distance tells us how much dry back-end area is within any one pattern and can give us a good idea of where to play on the lane, providing the lane surface is fairly neutral. Essentially, the shorter the oil pattern is, the farther towards the outside portion of the lane one should play, and the longer the oil pattern is, the farther inside a pattern might play. Of course there are other variables that can affect this theory; like the amount of conditioner on the outside portion of the lane, the shape (topography) of the lane surface, and the friction of the lane surface. However, knowing the distance of the oil pattern, and how it affects your particular style of play, can help you line up quicker than not knowing this important pattern detail.

The distance of the oil pattern can be found at the top left corner of the KEGEL FLEX program sheet.

Oil Per Board Value Number

The Oil Per Board value, found at the top right of the FLEX oil pattern program sheet, is the size of the oil stream in microliters - the higher the value, the larger the oil stream, and the larger the stream, the more conditioner is applied to the lane.

Number of 2-2 Loads

The Number of 2-2 loads can often be a measure of difficulty. Think about these loads as the base of the oil pattern and all loads inside of the 2-2 loads are the shape of the oil pattern. The more 2-2 loads the more difficult an oil pattern will play because once there is a certain amount of conditioner across the entire lane surface, the shape of the oil pattern becomes less relevant.

At this year’s Open Championships, the 2-2 loads make up 12.95 milliliters of the total volume of the 27.05 singles/doubles oil pattern and 14.80 milliliters of the total volume of the 26.90 milliliters team event pattern.  In comparison, in most house patterns the 2-2 loads make up 3.7 milliliters of the total volume of the pattern which is in the 22 milliliter range.

The 2-2 loads are normally the first loads on the forward pass and the last load before the buff line in the reverse pass.

Buffer RPM

The FLEX lane machines in use at this year’s championship have four buffer speed options, which are noted on the program sheet by the numbers 1, 2, 3, and 4. Number 1 is what we call slow buff, and it has a speed of 100 RPM. Number 2 is medium buff and has a speed of 200 RPM. Number 3 buffs at 500 RPM and is the default speed that is used on previous models such as the Kustodian ION and Kustodian Walker. Number 4 is high buff and has a speed of 720 RPM. (Note: Individual FLEX owners can customize the buffer RPM settings for their needs, so you may see different numbers on different program sheets.)

The different buffer speeds on the FLEX allow us to do a couple things; one is it allows us to fine tune the front to back taper of the oil pattern without changing lane machine drive speeds. The other is it allows us to condition the lanes in less time by allowing us to apply more conditioner in the front part of the lane without slowing the machine down, as we would have to do in machines with single speed buffer motors.

In short, the faster the speed of the buffer brush, the more conditioner can be applied in any one section of the oil pattern. Conversely, the slower the speed of the buffer brush, less conditioner will be applied to the lane surface.

You will notice on this year’s championship patterns the choice of using buffer speed 4 in the front part of the oil pattern on both the forward and reverse pass of the pattern. Medium and slow buff is not used in this year’s patterns.

The Load Structure

As previously mentioned, once there is a certain amount of conditioner on the lane the load structure becomes less relevant. However, one thing to note this year compared to recent years, and a house pattern, is how none of the loads are “stacked up”. This means the inside load streams are spread out across the oil pattern which makes the pattern a simple blend, or crowned oil pattern (See graphics above). 

Because of this type load structure there is not a defined oil line anywhere throughout either the Team or Doubles/Singles event patterns which places a premium on consistent shot making and accuracy.  Only once bowling begins, and depletion takes place, can an oil line be developed if, and that is a big if, everyone plays in the same place from the beginning of practice to at least through the first few frames of game one. This is called “managing the oil pattern” in modern bowling vernacular.

This year’s USBC Open Championship should prove out to be one of the lower scoring championships in recent years simply because of the flatness of the patterns. However, it should also prove out to be one of the most competitive because when scores are lower, the gap between the higher scores and lower scores is much narrower. 

In closing, if you have not already made the trip to El Paso, practice your spare game, have a good game plan with your teammates, and let your ball be your guide. 

Read More

"Is Your Center Fundamentally Sound" The View from a Coach

As a coach that travels the country for a better part of the year, and walks into unfamiliar bowling centers on a weekly basis, I hope to shed some light on what a coach really sees in your center, and what you can do as a mechanic to help bring tournaments back to your center year after year. Sitting in a hotel room now writing this, many thoughts run through my mind about what the start of a tournament tomorrow will bring.

Walking though the doors tomorrow I will immediately walk over to our starting lanes. A quick glance of the lanes themselves will give me an idea of how the mechanic prides himself on his daily duties. The first things I will look at are the gutters (not because we will be in them all day), then approaches, and finally the first foot of the lane surface. You may be shaking your head by now, but take a second to think about something… Freshly dusted gutters tell me someone cares about their job and how their center looks to newly invited guests, as do approaches that are spotless, and the fact that someone took the time to clean the first foot of the lane that the machine can not clean.

As the pinsetters fire up for open practice, every lane my players bowl on, they check the foul lights. A foul can be the difference between winning a match or losing by a stick. Did the mechanic take the time to check and inspect every unit before competition started? Since our practice is 20 minutes across the house and followed by ten minutes on our starting pair, I take the first half of the open practice to write in my notebook taking notes on lanes that set pins off spot on full racks, pins that wobble on a 2nd ball cycle, other players that are having sliding issues and how this can affect my team during a tight match where a key spare needs to be made. Your goal as a mechanic is to never give me the right to use my pen.

My ears are trained as a mechanic myself, I don't want to hear multiple calls to the back, nor do I want multiple malfunctions to hinder our fast paced style of play. Bowling for 6 hours and being on our feet all day is long enough without the hassles of waiting for multiple stops on multiple lanes. Believe me when I say at the end of the day I hear all of the good and bad from a variety of coaches on how a center runs. Most coaches are bowlers, and bowlers don't understand the mechanical side of a pinsetter. They expect it to go up and down, return their ball, and work perfect every time they throw a ball. As a mechanic you should provide that experience to the people that are helping to pay your wages.

Take the time in the weeks prior to your event and check your pin spots. Go through a morning routine and reset all of your lanes using the reset button to make sure it works, and watch your racks to make sure all pins are set on spot on a first and second ball cycle. Turn the foul lights on and check them your self and correct any problems you may find. Check all of your hand dryers to make sure they work properly. This will cover most of the front-end things that we see as coaches and competitors, but take it a step further. Inspect your kickbacks for screw heads that may cause ball damage as well as your ball tracks and any transitions (nothing is worse than scoring well and having a screw head take out part of your thumb hole which takes that ball out of your line-up, been there and have the t-shirt). Make sure your parts inventory is stocked so one small part doesn't make a lane go black for the weekend. Go over your stop sheets and make hot lists to fix any minimal problems such as nagging 180 stops, ball returns, or dreaded blackouts. On the day of competition get to the center in time to clean your gutters, clean your approaches, and take pride in doing your lanes and cleaning that first foot that your reliable lane machine can't get to.

In a coaches eye, I don't want to use my notebook to document off spot pins or approach issues, I want to use it to record my moves and ball changes to better me through out my competition weekend. I want to spend my time focusing on my players and their games, not what I would have done as a mechanic to make things better. If I can spend my entire day focusing on how to make my players win, then your bowling center is fundamentally sound and you have the coach's approval.

Read More

Who do you follow? We're not talking about Twitter...

In previous Inside Line articles, we showed how oil pattern breakdown happens with today's high flaring bowling balls and how different styles of play can affect an oil pattern in different ways. In this article, we will show how different groups of players with similar styles can greatly affect an oil pattern by strategically "managing the oil pattern" during practice time and the first game, and the resulting scoring pace for all those that follow these skillful "pattern managers."

The scene was the Men's Team event second block on the WTBA Seoul oil pattern during the 2013 WTBA World Championships in Las Vegas. The WTBA rule for practice time for 5 person team event is 15 minutes, then all teams bowl 3 games moving lanes every game. This gives us about 4-5 games per lane by the time each team finishes the 3rd frame of game one.

Our testing and after tapes at many modern day events show that when players play a similar line each and every shot during this time on a fresh oil pattern, over 50 percent of the lane conditioner can be removed from that area throughout the ENTIRE length of the applied oil pattern. This is significant and something all competitive players and coaches must be aware of in today's game.

Here was a test showing how much conditioner was removed in the area of play after each 3 games:

 

The significance and rapid pattern change is so prevalent in today's game that some Federations even employ multiple coaches during championships- one coach on the lanes helping the players during competition, and another coach "scouting out" the pair of lanes they will be moving to. Just knowing how and where the teams are playing on the lanes in front them can give them valuable information and help them get lined up quicker. In championship events, this can be the difference between winning, losing, or not even getting a chance to win. This played out exactly this way during the 2013 World Championships this year in the men's division.

Here is a graphic of the Seoul oil pattern just before the men's second squad of team event took the lanes - the graphic is with the perspective of looking at the oil pattern from the pins, so the 10 pin side is the left side of the graphic. Also shown below are the Sport Bowling ratios at multiple tape distances before the players took to the lanes:

 

As a side note, the WTBA Seoul oil pattern is asymmetrical with more oil outside on the left side than the right side, hence the lower ratios on the left side. You may also notice that at 32' this pattern does not fall within the 3 to 1 ratio parameters, but Sport Bowling ratios only use 22' and 2' before the end of the pattern to calculate whether it meets USBC Sport Bowling requirements, and the WTBA does not have any ratio requirements.

During this second block of team play, with these pairs of lanes being right in front of the tournament office, I was able to watch and see how each of the teams on these pairs were breaking down the lanes during the 15 minutes of practice. While watching Puerto Rico and Brazil on 57-58 play more outside, and the teams on 55-56 play more inside, I was wondering how much an effect that might have on the teams coming to these pair of lanes in games 2 and 3, so I planned on taking after tapes as soon as the block was over. Little did I know at the time, the way the teams on 57-58 broke down that pair would help Team Finland make history.

After 15 minutes of practice and three 5-man team games (15 plus games per lane), here is what the Seoul pattern morphed into on lanes 55-56:

 

From looking at these after tapes, it is clear how deep inside the bowlers on this pair ended up playing the lanes, which all came from how the initial teams decided to play the lanes in practice and game 1.

Here are the after ratios of lanes 55-56, calculated the same way as before:

 

The ratios normally get lower up front as the oil pattern gets depleted from the middle of the lane. What makes scoring pace rise as players break down the oil pattern is when all balls come together towards the end part of the oil pattern, which raises the ratios from outside to the middle. In this example the ratios from the fresh oil pattern went from about 3:1 to 3.6:1 at 32 feet and from 2.9:1 to 3.8:1 at 37 feet. This is enough for world class players to increase the scoring pace, and this block was no exception.

Here is the resulting scoring pace of each team for each game of this particular block of games on lanes 55-56::

 

As you can see by game 3 that pair became more playable because of oil pattern development with both Team Denmark and Team Korea breaking the 1100 barrier. It took longer because of how deep the previous teams played that pair. The reason it took longer is because when teams start in the deeper amount of oil, it takes longer for the ball to reach the "spark point", or in other words, break down the oil pattern enough for the ball to poke through the oil film and get to the lane surface. Once the ball sees the lane surface, it also sees friction. The earlier the ball sees friction within the oil pattern, the easier that pattern becomes because left of that is the created oil line.

And now the pair of lanes where the Seoul pattern was changed into something else, which helped Team Finland make history. The mutated Seoul oil pattern on lanes 57-58:

 

From looking at these after tapes, it is clear how much more outside the bowlers on this pair ended up playing the lanes, which also was decided because of how the initial teams decided to play the lanes in practice and game 1.

Here are the after ratios of this pair, calculated the same way as before:

 

While lanes 55-56 went to 3.6 and 3.8 to 1 towards the end of the oil pattern, the players on lanes 57-58 took the ratios to 5.2 and 5.6 to 1! This is borderline what many house shots are in today's game, but like I said before, most of the change happens within practice and the beginning of game one.

Here is the resulting scoring pace on lanes 57-58 of each team for each game during this block of games:

 

As you can see by the team game total scores, the teams that were fortunate enough to follow Puerto Rico and Brazil benefited greatly, but none more than Team Finland. This second team game with a score of 1225, along with the momentum that gave them and another 1200 plus score in game 3, catapulted them into the Team finals. After winning their semi-final match they defeated Team USA in the finals for the first team Gold medal for Finland in 30 years.

Fortunately, during this championship we also had available Kegel's LaneMap Guide of Sunset Station which shows the gravity influence on the ball based upon topography so we were able to see if one pair was significantly different causing that to be the reason for higher scores this block on 57-58, but that proved to be not the case, as the below graphic will clearly show. Both pairs have very similar characteristics.

 

Finally, one more look an after bowling graphic of both patterns and the resulting ratios side by side:

 

A well renowned Kegel laneman and now National Team Coach for Indonesia, John Forst, had a saying; "the applied oil pattern is only the pattern until the bowlers start bowling on it. After that, they are the ones that decide what happens, not the laneman."

In today's vernacular, the Seoul oil pattern, or any other named oil pattern for that matter, is only the intended pattern until players start rolling balls over it, and then that named pattern becomes something else. Some players can turn it into Easy Street, and some can turn it into the Highway to Hell. Keep your fingers crossed you follow players that can turn things into Easy Street.

Read More

Oh No! My pattern is not playing the same as last year!

By Doug Dukes - Kegel Technical Sales Specialist and Kegel Pinsetter Parts

"My pattern is the same as last year but it is not playing the same"  is one of the #1 lines we hear this time of year.  As one of the techs at Kegel that has the privilege to not only help all of you on the phone, but to also work on lane machines in the field, let’s take a look at some overlooked parts and adjustments to your lane machine.

CLEANING - “You can’t paint the Mona Lisa on a piece of toilet paper.”

The number one overlooked problem on a lane machine is its ability to clean.  Anytime a pattern adjustment is requested because they don’t play the same, our first question is “have you done a clean only”.

On Spray Jet machines, the screen check valves (153-0220) should be taken out regularly and cleaned.  Lint build up on these can wreak havoc on the jet's ability to spray properly and as the check valves get weak, your spray tips can drip.  If you notice that your machine is using less cleaner, it may be a good time to take these screens out and clean them.  There are also two filters that cleaner passes through before it gets to the screen check valves, one in the tank (154-0212B) and one inline filter before the pump (154-8867A or 154-8887).  It is always good to replace these filters every summer.

 

On Sprayless Cleaning Systems, you need to replace the two filters talked about above, but also your Norprene tubing in your cleaner pump (154-0861B).  This style cleaner pump operates by using a set of rollers that press cleaner through this tubing every time the motor turns on.  Over time, this tubing can lose its ability to allow cleaner to be pushed through it, and your volumes can be significantly reduced.  Many times I have run a cleaner volume check on a lane machine and looked at the touchscreen only to realize that I was the last one to run the test during the yearly service last year!!!  You guessed it……the volume was significantly lower than what it should have been.

Once you change the tubing, run a volume check and set it to your desired output and monitor this for a few weeks as the tubing breaks in.  It will vary a bit during this time and a readjustment may be required, but it will settle in quickly.  This should be checked on a regular basis throughout your season as well.

The cushion roller (153-8838 standard roller and 153-8839 roller with wrap), is another frequently overlooked piece to the cleaning puzzle.  The size of the cushion is the key to your cleaning.  If we think about how the cushion roller works, when the cloth unwinds, the cushion roller drops onto its stop bolts.  When the machine is pushed onto the lane, the cushion actually lifts up off the stop bolts, and the weight of the cushion is what helps clean the lane.  Simple right?  If your cushion has gotten smaller over time, now it is not making full contact with the lane surface.  This means it will not clean well.  Mona Lisa and toilet paper soon to follow.

If you look at your cushion roller and see the “alligator skin” look, the ends are flaring out or torn and the cloth is visually pulling into the roller, or if you can wrap your hand completely around it, it is probably time to send it to greener pastures.  One trick I show during service stops is releasing the tension on the cushion roller when you finish your lanes.

 

On machines that have the take up roll on the top, you can stand the machine in the transport position when finished and open the duster compartment.  Slide the take up roll to the side and turn it 180 degrees and lock it back in place.  This will relieve the pressure on the roller and when you turn the machine on to run lanes the next day, the machine will find “home” and wind the cloth back up for you.  This can extend the life of your cushion and save you from headaches mid-season.

Squeegee blades (153-8204E Blue or 153-8834 Brown) normally are not overlooked, but why leave them out.  Your squeegees should be flipped every six months, and changed once a year.  You don’t want to leave any cleaner behind.  Always check for your 1/8 to 3/16 adjustment as well, once you change or flip your blades and adjust accordingly.

Recovery tank filters are another overlooked item in the cleaning process.  Waste tank a little lighter than normal?  Check your filter and change it regularly. This is the perfect time to flush out your vacuum hoses and check for small pin holes that may affect suction, along with cleaning your vacuum motor and checking the motor brushes.

 

Conditioning - “The best canvas deserves a worthy brush.”

A few minor adjustments in your transfer system that have been overlooked can also make you pull your hair out when you’re dialing in your pattern.

Have you checked your crush adjustments on your brush?  Most people check the crush from the buffer brush to the lane and set their buffers at 1/8 to 3/16.  What most people don’t check is the crush to the transfer brush or roller depending on the machine type.  If it can’t pick it up off the transfer brush or roller it can’t get it to the lane!

As the brush wears, it may lose some contact with the transfer brush or roller.  When getting ready for the fall season with an existing brush, or when putting in a new brush, always check this adjustment.  We like to see 1/8 inch of crush to the roller or transfer brush.

On a transfer brush system, if you turn the buffer on while the brush is in the down position, you should see a thin light colored line where the transfer brush and buffer brush meet.  This is from the bristles on the buffer brush being pushed together as they push against the transfer brush.  Adjust accordingly.


Your pressure gauge can tell you a lot about your lane machine as well.  If your pressure gauge fluctuates as you are applying loads or your pressure seems much higher than normal, you may need to clean your oil control valve.  Dirt can accumulate in your valve over time and cause pressure fluctuations while applying loads.  If the valve is dirty, take a good look at your filter inside your oil tank as well (154-0212).  Replacing it once a year will keep you in top running order.

Your lane machine is one of the most important machines in your center.  My final example I tend to give to proprietors and mechanics alike goes something like this…….

If one of your pinsetters happens to go down during a league, you may upset at most the 10 people that are bowling on that pair. But you probably have the parts to be able to fix this later that evening.  If your lane machine goes down, and you have a 32 lane center that is full, you’ve now made 160 people upset, and you may NOT have the parts to fix it.  You next day air the parts, but your still down the next night, and 160 turns into 320.  It is extremely important that you keep your machine clean, do your daily and monthly preventative maintenance, and not take your lane machine for granted.  Always keep a few parts on hand.  One of every relay, two of every fuse, a fuse holder, a head drive belt, check valves, etc.

This minimal list of low-cost items can be the difference between a full house of happy bowlers, or a lynch mob and a quick backdoor exit of the center.   Spend ten minutes a day, 20 minutes once a week, an hour a month and a half day every six months on your machine, and you will be able to keep it clean, and inspect the machine for wear on a regular basis.  Always remember we are only a phone call away 24 hours a day 7 days a week from anywhere in the world.  We are ALWAYS here to help.

Good luck and good scoring on your new season.

Read More